# Difference between revisions of "Open Problems:82"

m (Krzysztof Onak moved page Waiting:Beyond identity testing to Open Problems:82: The problem is ready for publication) |
(Cleaning header, small changes) |
||

Line 1: | Line 1: | ||

{{Header | {{Header | ||

− | |||

|source=focs17 | |source=focs17 | ||

|who=Clément Canonne | |who=Clément Canonne | ||

}} | }} | ||

− | Given access to i.i.d. samples from two unknown probability distributions $p | + | Given access to i.i.d. samples from two unknown probability distributions $p$ and $q$ over a discrete domain (say $[n]=\{1,\dots,n\}$) and distance parameter $\varepsilon\in(0,1]$, the ''equivalence'' (also known as ''closeness'') testing problem asks to distinguish w.h.p. between (i) $p=q$ and (ii) $\operatorname{d}_{\rm TV}(p,q)>\varepsilon$. (The ''identity'' problem is the analogue when $q$ is fixed and explicitly known beforehand.) |

− | Equivalence up to a permutation would then be the variant where one must test whether $p | + | Equivalence up to a permutation would then be the variant where one must test whether $p$ and $q$ are equal ''up to relabeling of the elements'': |

(i) $\exists \pi\in\mathcal{S}_n$ s.t. $p=q\circ\pi$ vs. (ii) $\forall \pi\in\mathcal{S}_n$, $\operatorname{d}_{\rm TV}(p,q\circ \pi)>\varepsilon$. Results of Valiant and Valiant {{cite|ValiantV-11}} imply that this question has sample complexity $\Theta(\frac{n}{\varepsilon^2\log n})$. | (i) $\exists \pi\in\mathcal{S}_n$ s.t. $p=q\circ\pi$ vs. (ii) $\forall \pi\in\mathcal{S}_n$, $\operatorname{d}_{\rm TV}(p,q\circ \pi)>\varepsilon$. Results of Valiant and Valiant {{cite|ValiantV-11}} imply that this question has sample complexity $\Theta(\frac{n}{\varepsilon^2\log n})$. | ||

− | The most general question then is | + | The most general question then is: |

: Given a fixed class $\mathcal{F}$ of functions from $[n]$ to $[m]$, distinguish between (i) $\exists \pi\in\mathcal{F}$ s.t. $p=q\circ\pi$ vs. (ii) $\forall \pi\in\mathcal{F}$, $\operatorname{d}_{\rm TV}(p,q\circ \pi)>\varepsilon$. | : Given a fixed class $\mathcal{F}$ of functions from $[n]$ to $[m]$, distinguish between (i) $\exists \pi\in\mathcal{F}$ s.t. $p=q\circ\pi$ vs. (ii) $\forall \pi\in\mathcal{F}$, $\operatorname{d}_{\rm TV}(p,q\circ \pi)>\varepsilon$. | ||

− | In particular, one can study how the sample complexity depends on $\mathcal{F}$, or what it is for some classes of interest (e.g., $n=m$ for $\mathcal{F}$ a subgroup of the symmetric group $\mathcal{S}_n$; or $m\ll n$ and $\mathcal{F}$ being a class of | + | In particular, one can study how the sample complexity depends on $\mathcal{F}$, or what it is for some classes of interest (e.g., $n=m$ for $\mathcal{F}$ a subgroup of the symmetric group $\mathcal{S}_n$; or $m\ll n$ and $\mathcal{F}$ being a class of “coarsenings,” capturing whether $p$ and $q$ are the same distribution but with a different discretization/binning). |

## Revision as of 06:09, 8 November 2017

Suggested by | Clément Canonne |
---|---|

Source | FOCS 2017 |

Short link | https://sublinear.info/82 |

Given access to i.i.d. samples from two unknown probability distributions $p$ and $q$ over a discrete domain (say $[n]=\{1,\dots,n\}$) and distance parameter $\varepsilon\in(0,1]$, the *equivalence* (also known as *closeness*) testing problem asks to distinguish w.h.p. between (i) $p=q$ and (ii) $\operatorname{d}_{\rm TV}(p,q)>\varepsilon$. (The *identity* problem is the analogue when $q$ is fixed and explicitly known beforehand.)

Equivalence up to a permutation would then be the variant where one must test whether $p$ and $q$ are equal *up to relabeling of the elements*:
(i) $\exists \pi\in\mathcal{S}_n$ s.t. $p=q\circ\pi$ vs. (ii) $\forall \pi\in\mathcal{S}_n$, $\operatorname{d}_{\rm TV}(p,q\circ \pi)>\varepsilon$. Results of Valiant and Valiant [ValiantV-11] imply that this question has sample complexity $\Theta(\frac{n}{\varepsilon^2\log n})$.

The most general question then is:

- Given a fixed class $\mathcal{F}$ of functions from $[n]$ to $[m]$, distinguish between (i) $\exists \pi\in\mathcal{F}$ s.t. $p=q\circ\pi$ vs. (ii) $\forall \pi\in\mathcal{F}$, $\operatorname{d}_{\rm TV}(p,q\circ \pi)>\varepsilon$.

In particular, one can study how the sample complexity depends on $\mathcal{F}$, or what it is for some classes of interest (e.g., $n=m$ for $\mathcal{F}$ a subgroup of the symmetric group $\mathcal{S}_n$; or $m\ll n$ and $\mathcal{F}$ being a class of “coarsenings,” capturing whether $p$ and $q$ are the same distribution but with a different discretization/binning).