Editing Open Problems:84

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 2: Line 2:
 
|source=focs17
 
|source=focs17
 
|who=Alon Orlitsky
 
|who=Alon Orlitsky
 +
|title=Efficient Profile Maximum Likelihood Computation
 
}}
 
}}
  
βˆ’
Given a sequence of samples $\mathbf{s}=(s_1,\dots,s_n)\in\mathbb{N}^n$, the ''sequence maximum likelihood'' (SML) estimator is the probability distribution over $\mathbb{N}$ that maximizes the probability of this sequence, i.e.,
+
Given a sequence of samples $\mathbf{s}=(s_1,\dots,s_n)\in\mathbb{N}^n$, the ''sequence maximum likelihood'' (SML) estimator is the probability distribution over $\mathbb{N}$ which maximizes the probability of this sequence, i.e.
 
$$
 
$$
 
p^{\rm SML} \stackrel{\rm def}{=} \arg\!\!\!\max_{p\in\Delta(\mathbb{N})} p^{\otimes n}(\mathbf{s})
 
p^{\rm SML} \stackrel{\rm def}{=} \arg\!\!\!\max_{p\in\Delta(\mathbb{N})} p^{\otimes n}(\mathbf{s})
Line 19: Line 20:
 
p^{\rm PML} \stackrel{\rm def}{=} \arg\!\!\!\max_{p\in\Delta(\mathbb{N})} \sum_{\mathbf{s'}: \Phi(\mathbf{s'})=\Phi(\mathbf{s})} p^{\otimes n}(\mathbf{s'})\,.
 
p^{\rm PML} \stackrel{\rm def}{=} \arg\!\!\!\max_{p\in\Delta(\mathbb{N})} \sum_{\mathbf{s'}: \Phi(\mathbf{s'})=\Phi(\mathbf{s})} p^{\otimes n}(\mathbf{s'})\,.
 
$$
 
$$
βˆ’
The PML is particularly well-suited to dealing with symmetric properties and functionals of distributions (i.e., those invariant to relabeling of the domain), as shown in {{cite|AcharyaDOS-17}}. In particular, in the sublinear sample regime, it provably outperforms the SML. However, from a computational point of view, it is unclear whether one can compute it efficiently.
+
The PML is particularly well-suited to dealing with symmetric properties and functionals of distributions (i.e., those invariant by relabeling of the domain), as shown in {{cite|AcharyaDOS-17}}. In particular, in the sublinear sample regime, it provably outperforms the SML. However, from a computational point of view, it is unclear whether one can compute it efficiently.
  
βˆ’
Is there a polynomial (or even strongly subexponential) time algorithm to compute or (multiplicatively) approximate the PML?
+
Is there a polynomial- (or even strongly subexponential)-time algorithm to compute the PML? To (multiplicatively) approximate it?

Please note that all contributions to Open Problems in Sublinear Algorithms may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Open Problems in Sublinear Algorithms:Copyrights for details). Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)