Difference between revisions of "Open Problems:27"

From Open Problems in Sublinear Algorithms
Jump to: navigation, search
m (updated header)
 
Line 1: Line 1:
 
{{Header
 
{{Header
|title=Modeling of Distributed Computation
 
 
|source=kanpur09
 
|source=kanpur09
 
|who=Paul Beame
 
|who=Paul Beame
 
}}
 
}}
 
MapReduce has recently inspired two distributed models of computation in the theory community. One is the MUD model of Feldman et al. {{cite|FeldmanMSSS-10}}. In this model they assume that every worker has at most a polylogarithmic amount of space available, which in total gives at most $\tilde O(n)$ space, where $n$ is the input size (in the order of at least terabytes). The other model of computation, due to Karloff et al. {{cite|KarloffSV-10}}, assumes that each of $n^{1-\epsilon}$ workers has at most $n^{1-\epsilon}$ space, where $\epsilon$ is a fixed positive constant. This totals to $n^{2-2\epsilon}$ space in the entire system. Can one design an interesting and practical model that only uses $n^{1+o(1)}$ space/resources?
 
MapReduce has recently inspired two distributed models of computation in the theory community. One is the MUD model of Feldman et al. {{cite|FeldmanMSSS-10}}. In this model they assume that every worker has at most a polylogarithmic amount of space available, which in total gives at most $\tilde O(n)$ space, where $n$ is the input size (in the order of at least terabytes). The other model of computation, due to Karloff et al. {{cite|KarloffSV-10}}, assumes that each of $n^{1-\epsilon}$ workers has at most $n^{1-\epsilon}$ space, where $\epsilon$ is a fixed positive constant. This totals to $n^{2-2\epsilon}$ space in the entire system. Can one design an interesting and practical model that only uses $n^{1+o(1)}$ space/resources?

Latest revision as of 01:50, 7 March 2013

Suggested by Paul Beame
Source Kanpur 2009
Short link https://sublinear.info/27

MapReduce has recently inspired two distributed models of computation in the theory community. One is the MUD model of Feldman et al. [FeldmanMSSS-10]. In this model they assume that every worker has at most a polylogarithmic amount of space available, which in total gives at most $\tilde O(n)$ space, where $n$ is the input size (in the order of at least terabytes). The other model of computation, due to Karloff et al. [KarloffSV-10], assumes that each of $n^{1-\epsilon}$ workers has at most $n^{1-\epsilon}$ space, where $\epsilon$ is a fixed positive constant. This totals to $n^{2-2\epsilon}$ space in the entire system. Can one design an interesting and practical model that only uses $n^{1+o(1)}$ space/resources?