Difference between revisions of "Open Problems:66"

From Open Problems in Sublinear Algorithms
Jump to: navigation, search
Line 5: Line 5:
 
}}
 
}}
 
   
 
   
Suppose we're given access to two distributions $P$ and $Q$ over $[1 \ldots n]$ and wish to test if they are the same or are at least $\epsilon$ apart under the $\ell_1$ distance. Assume that we have access to ''conditional samples'': in other words, a query consists of a set $S \subset [1..n]$ and the output is a sample drawn from the conditional distribution on $A$. In other words, a conditional sample on $P$ given $S$ is drawn from the distribution where  
+
Suppose we are given access to two distributions $P$ and $Q$ over $\{1,2, \ldots, n\}$ and wish to test if they are the same or are at least $\epsilon$ apart under the $\ell_1$ distance. Assume that we have access to ''conditional samples'': a query consists of a set $S \subseteq \{1,2, \ldots, n\}$ and the output is a sample drawn from the conditional distribution on $A$. In other words, a conditional sample on $P$ given $S$ is drawn from the distribution where  
  
 
$$ \text{Pr}(j) = \begin{cases} \frac{p_j}{\sum_{i \in A} p_i} & j \in A \\ 0 & \text{otherwise} \end{cases} $$
 
$$ \text{Pr}(j) = \begin{cases} \frac{p_j}{\sum_{i \in A} p_i} & j \in A \\ 0 & \text{otherwise} \end{cases} $$
  
It is known that if one of the distributions is fixed, then a constant ($f(1/\epsilon)$) number of queries suffice to test the distributions.  
+
It is known that if one of the distributions is fixed, then a constant number ($f(1/\epsilon)$, where $f$ is an arbitrary function) of queries suffice to test the distributions.  
  
What can we say if both distributions are unknown ?
+
What can we say if both distributions are unknown?

Revision as of 04:22, 4 June 2014

Suggested by Eldar Fischer
Source Bertinoro 2014
Short link https://sublinear.info/66

Suppose we are given access to two distributions $P$ and $Q$ over $\{1,2, \ldots, n\}$ and wish to test if they are the same or are at least $\epsilon$ apart under the $\ell_1$ distance. Assume that we have access to conditional samples: a query consists of a set $S \subseteq \{1,2, \ldots, n\}$ and the output is a sample drawn from the conditional distribution on $A$. In other words, a conditional sample on $P$ given $S$ is drawn from the distribution where

$$ \text{Pr}(j) = \begin{cases} \frac{p_j}{\sum_{i \in A} p_i} & j \in A \\ 0 & \text{otherwise} \end{cases} $$

It is known that if one of the distributions is fixed, then a constant number ($f(1/\epsilon)$, where $f$ is an arbitrary function) of queries suffice to test the distributions.

What can we say if both distributions are unknown?