Difference between revisions of "Open Problems:66"
Line 5: | Line 5: | ||
}} | }} | ||
− | Suppose we are given access to two distributions $P$ and $Q$ over $\{1,2, \ldots, n\}$ and wish to test if they are the same or are at least $\epsilon$ apart under the $\ell_1$ distance. Assume that we have access to ''conditional samples'': a query consists of a set $S \subseteq \{1,2, \ldots, n\}$ and the output is a sample drawn from the conditional distribution on $ | + | Suppose we are given access to two distributions $P$ and $Q$ over $\{1,2, \ldots, n\}$ and wish to test if they are the same or are at least $\epsilon$ apart under the $\ell_1$ distance. Assume that we have access to ''conditional samples'': a query consists of a set $S \subseteq \{1,2, \ldots, n\}$ and the output is a sample drawn from the conditional distribution on $S$ {{cite|ChakrabortyFGM-13|CanonneRS-14}}. In other words, if $p_j$ is the probability of drawing an element $j$ from $P$, a conditional sample from $P$ restricted to $S$ is drawn from the distribution where |
− | $$ \text{Pr}(j) = \begin{cases} \frac{p_j}{\sum_{i \in | + | $$ \text{Pr}(j) = \begin{cases} \frac{p_j}{\sum_{i \in S} p_i} & \mbox{if }j \in S, \\ 0 & \mbox{otherwise.}\end{cases} $$ |
− | It is known that if one of the distributions is fixed, then | + | It is known that if one of the distributions is fixed, then the testing problem requires at most $\tilde O(1/\epsilon^4)$ queries, which is independent of $n$ {{cite|CanonneRS-14}}. |
− | What can we say if both distributions are unknown? | + | What can we say if both distributions are unknown? The best known upper bound is $\tilde O\left( \frac{\log^5 n}{\epsilon^4} \right)$ {{cite|CanonneRS-14}}. |
Revision as of 18:07, 4 June 2014
Suggested by | Eldar Fischer |
---|---|
Source | Bertinoro 2014 |
Short link | https://sublinear.info/66 |
Suppose we are given access to two distributions $P$ and $Q$ over $\{1,2, \ldots, n\}$ and wish to test if they are the same or are at least $\epsilon$ apart under the $\ell_1$ distance. Assume that we have access to conditional samples: a query consists of a set $S \subseteq \{1,2, \ldots, n\}$ and the output is a sample drawn from the conditional distribution on $S$ [ChakrabortyFGM-13,CanonneRS-14]. In other words, if $p_j$ is the probability of drawing an element $j$ from $P$, a conditional sample from $P$ restricted to $S$ is drawn from the distribution where $$ \text{Pr}(j) = \begin{cases} \frac{p_j}{\sum_{i \in S} p_i} & \mbox{if }j \in S, \\ 0 & \mbox{otherwise.}\end{cases} $$ It is known that if one of the distributions is fixed, then the testing problem requires at most $\tilde O(1/\epsilon^4)$ queries, which is independent of $n$ [CanonneRS-14].
What can we say if both distributions are unknown? The best known upper bound is $\tilde O\left( \frac{\log^5 n}{\epsilon^4} \right)$ [CanonneRS-14].