Difference between revisions of "Open Problems:45"
(→Updates) |
|||
Line 19: | Line 19: | ||
== Updates == | == Updates == | ||
The progress on the MAX-CUT problem in the streaming setting: | The progress on the MAX-CUT problem in the streaming setting: | ||
− | * Estimating the maximum cut to within a factor of $(1-\varepsilon)$ requires $n^{1-O(\varepsilon)}$ space {{cite| | + | * Estimating the maximum cut to within a factor of $(1-\varepsilon)$ requires $n^{1-O(\varepsilon)}$ space {{cite|Kapralov-Khanna-Sudan'15|Kogan-Krauthgamer'15}}. |
− | * There exists a constant $\varepsilon_*>0$ such that obtaining a $(1-\varepsilon_*)$ approximation to MAX-CUT requires $\Omega(n)$ space {{cite| | + | * There exists a constant $\varepsilon_*>0$ such that obtaining a $(1-\varepsilon_*)$ approximation to MAX-CUT requires $\Omega(n)$ space {{cite|Kapralov-Khanna-Sudan-Velingker'17}}. |
− | * In random-order streams, $\Omega(\sqrt{n})$ space is needed to obtain a better than $1/2$ approximation {{cite| | + | * In random-order streams, $\Omega(\sqrt{n})$ space is needed to obtain a better than $1/2$ approximation {{cite|Kapralov-Khanna-Sudan'15}}. |
Revision as of 03:32, 27 June 2022
Suggested by | Robert Krauthgamer |
---|---|
Source | Bertinoro 2011 |
Short link | https://sublinear.info/45 |
The problem is defined as follows: given a stream of edges of an $n$-node graph $G$, estimate the value of the maximum cut in $G$.
Question: Is there an algorithm with an approximation factor strictly better than $1/2$ that uses $o(n)$ space?
Background: Note that $1/2$ is achievable using random assignment argument. Moreover, using sparsification arguments [Trevisan-09,AhnG-09], one can obtain a better approximation ratio using $O(n \operatorname{polylog} n)$ space. Woodruff and Bhattacharyya (private communication) noted that subsampling $O(n/\epsilon^2)$ edges gives, with high probability, an $\epsilon$-additive approximation for all cuts, and thus $1+\epsilon$ multiplicative approximation for MAX-CUT.
Question: What about general constraint satisfaction problems with fixed clause-length and alphabet-size? In this case it is even not known how to obtain $O(n \operatorname{polylog} n)$ space bound.
Updates
The progress on the MAX-CUT problem in the streaming setting:
- Estimating the maximum cut to within a factor of $(1-\varepsilon)$ requires $n^{1-O(\varepsilon)}$ space [Kapralov-Khanna-Sudan'15,Kogan-Krauthgamer'15].
- There exists a constant $\varepsilon_*>0$ such that obtaining a $(1-\varepsilon_*)$ approximation to MAX-CUT requires $\Omega(n)$ space [Kapralov-Khanna-Sudan-Velingker'17].
- In random-order streams, $\Omega(\sqrt{n})$ space is needed to obtain a better than $1/2$ approximation [Kapralov-Khanna-Sudan'15].