Difference between revisions of "Open Problems:39"
m |
(updated header) |
||
Line 1: | Line 1: | ||
{{Header | {{Header | ||
− | |||
|source=bertinoro11 | |source=bertinoro11 | ||
|who=Krzysztof Onak | |who=Krzysztof Onak |
Revision as of 01:53, 7 March 2013
Suggested by | Krzysztof Onak |
---|---|
Source | Bertinoro 2011 |
Short link | https://sublinear.info/39 |
Consider graphs with maximum degree bounded by $d$. It is possible to approximate the size of the maximum matching up to an additive $\epsilon n$ in time that is a function of only $\epsilon$ and $d$ [NguyenO-08,YoshidaYI-09]. The fastest currently known algorithm runs in $d^{O(1/\epsilon^2)}$ time [YoshidaYI-09].
Question: Is there an algorithm that runs in $\operatorname{poly}(d/\epsilon)$ time?