Editing Open Problems:27

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 1: Line 1:
 
{{Header
 
{{Header
 +
|title=Modeling of Distributed Computation
 
|source=kanpur09
 
|source=kanpur09
 
|who=Paul Beame
 
|who=Paul Beame
 
}}
 
}}
 
MapReduce has recently inspired two distributed models of computation in the theory community. One is the MUD model of Feldman et al. {{cite|FeldmanMSSS-10}}. In this model they assume that every worker has at most a polylogarithmic amount of space available, which in total gives at most $\tilde O(n)$ space, where $n$ is the input size (in the order of at least terabytes). The other model of computation, due to Karloff et al. {{cite|KarloffSV-10}}, assumes that each of $n^{1-\epsilon}$ workers has at most $n^{1-\epsilon}$ space, where $\epsilon$ is a fixed positive constant. This totals to $n^{2-2\epsilon}$ space in the entire system. Can one design an interesting and practical model that only uses $n^{1+o(1)}$ space/resources?
 
MapReduce has recently inspired two distributed models of computation in the theory community. One is the MUD model of Feldman et al. {{cite|FeldmanMSSS-10}}. In this model they assume that every worker has at most a polylogarithmic amount of space available, which in total gives at most $\tilde O(n)$ space, where $n$ is the input size (in the order of at least terabytes). The other model of computation, due to Karloff et al. {{cite|KarloffSV-10}}, assumes that each of $n^{1-\epsilon}$ workers has at most $n^{1-\epsilon}$ space, where $\epsilon$ is a fixed positive constant. This totals to $n^{2-2\epsilon}$ space in the entire system. Can one design an interesting and practical model that only uses $n^{1+o(1)}$ space/resources?

Please note that all contributions to Open Problems in Sublinear Algorithms may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Open Problems in Sublinear Algorithms:Copyrights for details). Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)