Difference between revisions of "Open Problems:29"

From Open Problems in Sublinear Algorithms
Jump to: navigation, search
m (1 revision)
Line 1: Line 1:
{{DISPLAYTITLE:Problem 29: Strong Lower Bounds for Graph Problems}}
+
{{Header
{{Infobox
+
|title=Strong Lower Bounds for Graph Problems
|label1 = Proposed by
+
|source=kanpur09
|data1 = Krzysztof Onak
+
|who=Krzysztof Onak
|label2 = Source
 
|data2 = [[Workshops:Kanpur_2009|Kanpur 2009]]
 
|label3 = Short link
 
|data3 = http://sublinear.info/29
 
 
}}
 
}}
 
A large number of streaming papers consider graph problems. Typically, the input stream is an arbitrarily-ordered sequence of edges. For many problems, one can show that solving the problem, even approximately, requires $\Omega(n)$ bits of space.  
 
A large number of streaming papers consider graph problems. Typically, the input stream is an arbitrarily-ordered sequence of edges. For many problems, one can show that solving the problem, even approximately, requires $\Omega(n)$ bits of space.  

Revision as of 05:24, 16 November 2012

Suggested by Krzysztof Onak
Source Kanpur 2009
Short link https://sublinear.info/29

A large number of streaming papers consider graph problems. Typically, the input stream is an arbitrarily-ordered sequence of edges. For many problems, one can show that solving the problem, even approximately, requires $\Omega(n)$ bits of space. For instance, one can relatively easily prove that finding a constant-factor approximation to the maximum matching problem requires $\Omega(n)$ bits of space. Therefore, in many cases, the desired space complexity is of the form $\tilde O(n)$. Despite this relaxation, it is plausible that for some popular problems, there are barriers that cannot be overcome by (approximate) algorithms that use $n^{1+o(1)}$ space and a small number of passes.

For example, let $M(G)$ be the maximum matching size in the input graph $G$. McGregor [McGregor-05] shows that there is an algorithm that finds a matching of size $(1-\epsilon) \cdot M(G)$ in a number of passes that is a function of only $\epsilon$. It is plausible that for any constant $k$, there is no $k$-pass $\tilde O(n)$-space algorithm that finds a matching of size greater than $(1-\epsilon_k) \cdot M(G)$ times the optimum, where $\epsilon_k$ is a positive constant. In particular, to the best of my knowledge, no one-pass $\tilde O(n)$-space algorithm that finds a $(1-\epsilon)$-approximation for any constant $\epsilon \in (0,1/2)$ is known. Can one prove lower bounds as suggested above? The question generalizes to other problems. For instance, the best known $\tilde O(n)$-space algorithms for simulating random walks require a large number of passes (see [DasSarmaGP-08] and Rina Panigrahy's question). Can one prove for these problems that a small number of passes requires $n^{1+\Omega(1)}$ space?

To the best of my knowledge, the only problem for which this kind of lower bound is known is approximating graph distances. Feigenbaum et al. [FeigenbaumKMSZ-08] show that obtaining a $t$-approximation for the distance between two nodes in a single pass requires $\Omega(n^{1+1/t})$ space.