# Editing Open Problems:34

**Warning:** You are not logged in. Your IP address will be publicly visible if you make any edits. If you **log in** or **create an account**, your edits will be attributed to your username, along with other benefits.

The edit can be undone.
Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

Latest revision | Your text | ||

Line 1: | Line 1: | ||

β | {{ | + | {{DISPLAYTITLE:Problem 34: Linear Algebra Computation}} |

β | | | + | {{Infobox |

β | | | + | |label1 = Proposed by |

+ | |data1 = Michael Mahoney | ||

+ | |label2 = Source | ||

+ | |data2 = [[Workshops:Kanpur_2009|Kanpur 2009]] | ||

+ | |label3 = Short link | ||

+ | |data3 = http://sublinear.info/34 | ||

}} | }} | ||

It is often not the case that the entire data sits on a single machine and that we are allowed to make one or more passes over it. Instead the data is often distributed across multiple systems. This is one of the reasons why the streaming model does not have more impact in practice for linear algebra computation. It would be great to design new models that address this shortcoming. | It is often not the case that the entire data sits on a single machine and that we are allowed to make one or more passes over it. Instead the data is often distributed across multiple systems. This is one of the reasons why the streaming model does not have more impact in practice for linear algebra computation. It would be great to design new models that address this shortcoming. | ||

Consider also the following problem. Let $A$ be an $m\times n$ matrix and let $k$ be a rank parameter. Let $P_{A,k}$ be the projection matrix on the best rank-$k$ left (or right) singular subspace. The goal is to compute the diagonal of $P_{A,k}$ exactly or approximately in a small number of passes in the streaming model, or even better, in a new model that addresses the aforementioned shortcoming. | Consider also the following problem. Let $A$ be an $m\times n$ matrix and let $k$ be a rank parameter. Let $P_{A,k}$ be the projection matrix on the best rank-$k$ left (or right) singular subspace. The goal is to compute the diagonal of $P_{A,k}$ exactly or approximately in a small number of passes in the streaming model, or even better, in a new model that addresses the aforementioned shortcoming. |