Editing Open Problems:66

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 1: Line 1:
 
{{Header
 
{{Header
 +
|title=Distinguishing Distributions with Conditional Samples
 
|source=bertinoro14
 
|source=bertinoro14
 
|who=Eldar Fischer
 
|who=Eldar Fischer
 
}}
 
}}
+
???
Suppose we are given access to two distributions $P$ and $Q$ over $\{1,2, \ldots, n\}$ and wish to test if they are the same or are at least $\epsilon$ apart under the $\ell_1$ distance. Assume that we have access to ''conditional samples'': a query consists of a set $S \subseteq \{1,2, \ldots, n\}$ and the output is a sample drawn from the conditional distribution on $S$ {{cite|ChakrabortyFGM-13|CanonneRS-14}}. In other words, if $p_j$ is the probability of drawing an element $j$ from $P$, a conditional sample from $P$ restricted to $S$ is drawn from the distribution where
 
$$ \text{Pr}(j) = \begin{cases} \frac{p_j}{\sum_{i \in S} p_i} & \mbox{if }j \in S, \\ 0 & \mbox{otherwise.}\end{cases} $$
 
It is known that if one of the distributions is fixed, then the testing problem requires at most $\tilde O(1/\epsilon^4)$ queries, which is independent of $n$ {{cite|CanonneRS-14}}.
 
 
 
What can we say if both distributions are unknown? The best known upper bound is $\tilde O\left( \frac{\log^5 n}{\epsilon^4} \right)$ {{cite|CanonneRS-14}}.
 
 
 
==Updates==
 
Acharya, Canonne, and Kamath {{cite|AcharyaCK-14}} showed that $\Omega(\sqrt{\log \log n})$ conditional queries are needed in this case for some constant $\epsilon > 0$. Contrary to the case of only one distribution unknown, if both distributions are unknown, the required number of queries is a function of $n$. Falahatgar, Jafarpour, Orlitsky, Pichapathi, and Suresh {{cite|FalahatgarJOPS-15}} showed that $O\left(\frac{\log{\log{n}}}{\epsilon^5}\right)$ queries are sufficient. This determines the query complexity of the problem up to a factor of $\sqrt{\log \log n}$.
 
 
 
In the non-adaptive model, Kamath and Tzamos {{cite|KamathT-19}} showed that $\operatorname{poly} \log n$ conditional queries are sufficient for equivalence testing. A lower bound of $\Omega(\log n)$ by Acharya, Canonne, and Kamath {{cite|AcharyaCK-14}} for uniformity testing shows that identity and equivalence testing have complexities related by polynomial factors in the non-adaptive model, compared to the gap in the adaptive model.
 

Please note that all contributions to Open Problems in Sublinear Algorithms may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Open Problems in Sublinear Algorithms:Copyrights for details). Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)