Editing Open Problems:78

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 3: Line 3:
 
|who=Grigory Yaroslavtsev
 
|who=Grigory Yaroslavtsev
 
}}
 
}}
βˆ’
For a function $f:\{0,1\}^n\rightarrow\{0,1\}$, we define its deterministic linear sketch complexity $D^\text{lin}(f)$ as a the smallest number $k$ such that there exist $k$ sets $S_1,\ldots,S_k \subseteq [n]$ such that for any $x\in \{0,1\}^n$, we can compute $f(x)$ using $\sum_{i\in S_1} x_i, \ldots, \sum_{i\in S_k} x_i$, where the sum is mod $2$.  For randomized linear sketch complexity, which is denoted by $R^\text{lin}(f)$, the $k$ sets are chosen in advance from a joint distribution and are available for recovering $f(x)$.  Please see the paper by Kannan, Mossel, Sanyal and Yaroslavtsev {{cite|KannanMSY-18}} for more details.
+
For a function $f:\{0,1\}^n\rightarrow\{0,1\}$, we define its deterministic linear sketch complexity $D^\text{lin}(f)$ as a the smallest number $k$ such that there exist $k$ sets $S_1,\ldots,S_k \subseteq [n]$ such that for any $x\in \{0,1\}^n$, we can compute $f(x)$ using $\sum_{i\in S_1} x_i, \ldots, \sum_{i\in S_k} x_i$, where the sum is mod $2$.  For randomized linear sketch complexity, which is denoted by $R^\text{lin}(f)$, the $k$ sets are chosen in advance from a joint distribution and are available for recovering $f(x)$.  Please see the paper by Kannan, Mossel, and Yaroslavtsev {{cite|KannanMSY-18}} for more details.
  
 
Given $f$, we also define $f^+:\{0,1\}^n\times \{0,1\}^n \rightarrow\{0,1\}$ as $f^+ (x,y) = f(x\oplus y)$ for all $x,y\in\{0,1\}^n$, where $\oplus$ denotes bitwise XOR.  It is known that $D^\text{lin}(f) = D^\rightarrow(f^+)$ {{cite|MontanaroO-09}}, where $D^\rightarrow$ denotes one-way communication complexity (Alice sends one message to Bob).
 
Given $f$, we also define $f^+:\{0,1\}^n\times \{0,1\}^n \rightarrow\{0,1\}$ as $f^+ (x,y) = f(x\oplus y)$ for all $x,y\in\{0,1\}^n$, where $\oplus$ denotes bitwise XOR.  It is known that $D^\text{lin}(f) = D^\rightarrow(f^+)$ {{cite|MontanaroO-09}}, where $D^\rightarrow$ denotes one-way communication complexity (Alice sends one message to Bob).
  
 
Prove (or disprove) the following conjecture: $R^\text{lin}(f) = \tilde{\Theta}(R^\rightarrow(f^+))$.
 
Prove (or disprove) the following conjecture: $R^\text{lin}(f) = \tilde{\Theta}(R^\rightarrow(f^+))$.

Please note that all contributions to Open Problems in Sublinear Algorithms may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Open Problems in Sublinear Algorithms:Copyrights for details). Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)