Editing Open Problems:91

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 17: Line 17:
 
'''Upper bound:''' The known bound is $O(n^2/\epsilon^2)$ due to Kogan and Krauthgamer {{cite|KoganK-15}}. It is based on the sparsification method of Benczur and Karger {{cite|BenczurK-96}}. Another proof can be derived from a paper of Newman and Rabinovich {{cite|NewmanR-13}}.
 
'''Upper bound:''' The known bound is $O(n^2/\epsilon^2)$ due to Kogan and Krauthgamer {{cite|KoganK-15}}. It is based on the sparsification method of Benczur and Karger {{cite|BenczurK-96}}. Another proof can be derived from a paper of Newman and Rabinovich {{cite|NewmanR-13}}.
  
βˆ’
'''Special cases:''' The current upper bound $O(n^2/\epsilon^2)$ can be refined in terms of $\rank(H) := \max_{e\in E} |e| \leq n$. When $\rank(H)=2$ (i.e., ordinary graphs where all edges have cardinality 2), there always exists a sparsifier $H'$ of size $O(n/\epsilon^2)$ {{cite|BatsonSS-14}}.  
+
'''Special cases:''' The current upper bound $O(n^2/\epsilon^2)$ can be refined in terms of $\rank(H) := \max_{e\in E} |e| \leq n$. When $\rank(H)=2$ (i.e., ordinary graphs where all edges have cardinality 2), there always exists a sparsifier $H'$ of size $O(n/\epsilon^2)$ [J. D. Batson, D. A. Spielman, and N. Srivastava. Twice-ramanujan sparsifiers. SIAM Review, 56(2):315334, 2014].  
 
This bound easily extends to $\rank(H)=3$, because every hyperedge in $H$ can be replaced by a triangle (3 edges of cardinality 2) with edge weights $1/2$. For intermediate values of $\rank(H)$, the known upper bound is $O((\rank(H)+\log n) n/\epsilon^2)$ {{cite|KoganK-15}}.  
 
This bound easily extends to $\rank(H)=3$, because every hyperedge in $H$ can be replaced by a triangle (3 edges of cardinality 2) with edge weights $1/2$. For intermediate values of $\rank(H)$, the known upper bound is $O((\rank(H)+\log n) n/\epsilon^2)$ {{cite|KoganK-15}}.  
βˆ’
Another family of hypergraphs that admits an improved bound is when for every two vertices $u,v\in V$, there is at most one edge $e\in E$ containing both $u$ and $v$; see the thesis of Pogrow {{cite|Pogrow-17}}. Note that this family clearly contains all ordinary graphs.
+
Another family of hypergraphs that admits an improved bound is when for every two vertices $u,v\in V$, there is at most one edge $e\in E$ containing both $u$ and $v$ (this family clearly contains all ordinary graphs), see [Yosef Pogrow. Solving Symmetric Diagonally Dominant Linear Systems in Sublinear Time and Some Observations on Graph Sparsification. Weizmann MSc Thesis, 2017].
  
 
'''Lower bound:''' The only known lower bound is for ordinary graphs, and shows that (for every $n$ and $\epsilon>1/\sqrt{n}$) there is a hypergraph $H$ with $\rank(H)=2$, such that every $(1+\epsilon)$-cut-sparsifier must have $\Omega(n/\epsilon^2)$ edges {{cite|AndoniCKQWZ-16}}. A different, much simpler proof was devised by Carlson, Kolla, Srivastava, and Trevisan {{cite|CarlsonKST-17}}. Thus, there is a large gap between the upper bound $O_\epsilon(n^2)$ and the lower bound $\Omega_\epsilon(n)$ (this notation omits dependence on $\epsilon$).  
 
'''Lower bound:''' The only known lower bound is for ordinary graphs, and shows that (for every $n$ and $\epsilon>1/\sqrt{n}$) there is a hypergraph $H$ with $\rank(H)=2$, such that every $(1+\epsilon)$-cut-sparsifier must have $\Omega(n/\epsilon^2)$ edges {{cite|AndoniCKQWZ-16}}. A different, much simpler proof was devised by Carlson, Kolla, Srivastava, and Trevisan {{cite|CarlsonKST-17}}. Thus, there is a large gap between the upper bound $O_\epsilon(n^2)$ and the lower bound $\Omega_\epsilon(n)$ (this notation omits dependence on $\epsilon$).  
  
 
'''Remark:''' The above considers the number of hyperedges to be the size measure. An alternative measure is the total size of all hyperedges, i.e., $\sum_{e\in E} |e|$. The current upper bound on the total size of the sparsifier is $O_\epsilon(n^3)$, because every hyperedge has size at most $n$, and the lower bound is $\Omega_\epsilon(n)$ (coming from ordinary graphs), hence the gap here is even larger.
 
'''Remark:''' The above considers the number of hyperedges to be the size measure. An alternative measure is the total size of all hyperedges, i.e., $\sum_{e\in E} |e|$. The current upper bound on the total size of the sparsifier is $O_\epsilon(n^3)$, because every hyperedge has size at most $n$, and the lower bound is $\Omega_\epsilon(n)$ (coming from ordinary graphs), hence the gap here is even larger.

Please note that all contributions to Open Problems in Sublinear Algorithms may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Open Problems in Sublinear Algorithms:Copyrights for details). Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)