Problem 64: Matchings in the Turnstile Model

From Open Problems in Sublinear Algorithms
Jump to: navigation, search
Suggested by Andrew McGregor
Source Bertinoro 2014
Short link

Consider an unweighted graph on $n$ nodes defined by a stream of edge insertions and deletions. Is it possible to approximate the size of the maximum cardinality matching up to constant factor given a single pass and $o(n^2)$ space? Recall that a factor 2 approximation is easy in $O(n \log n)$ space if there are no edge deletions.


The question is fully settled when the goal is to output the edges of an approximate maximum matching: to obtain an $\alpha$-approximation to maximum matching in dynamic streams, $\Omega(n^2/\alpha^3)$ space is necessary [AssadiKLY-16] and $\widetilde{O}(n^2/\alpha^3)$ space is sufficient [AssadiKLY-16,ChitnisCEHMMV-16]. When the goal is only to estimate the value of maximum matching (as opposed to finding the edges), $\Omega(n/\alpha^2)$ space is necessary and $\widetilde{O}(n^2/\alpha^4)$ space is sufficient [AssadiKL-17].